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ABSTRACT

A phase field theory for modeling deformation and fracture of single crystals, polycrystals, and grain
boundaries is developed. Anisotropies of elastic coefficients and fracture surface energy are addressed,
the latter enabling favorable cleavage on intrinsically weak planes in crystals. An order parameter
increases in value as damage accumulates in an element of material. The shear elastic coefficients dete-
riorate with cumulative damage regardless of local strain state, while the effective bulk modulus
degrades only under tensile volumetric deformation. Governing equations and boundary conditions
are derived using variational methods. An incremental energy minimization approach is used to predict
equilibrium crack morphologies in finite element simulations of deforming polycrystals. Thin layers of
material, representative of glassy second phases near grain boundaries, are assigned possibly different
properties than surrounding crystals. Results of simulations of polycrystals subjected to tensile loading
are reported, with base properties representative of silicon carbide or zinc. Key findings include (i) a ten-
dency for intergranular over transgranular fracture as the grain boundary surface energy is reduced or as
cleavage anisotropy is increased and (ii) an increase in overall ductility and strength, the latter similar to
Hall-Petch scaling, as the absolute size of the polycrystal is reduced while holding the ratio of phase field

regularization length to grain size fixed.

Published by Elsevier B.V.

1. Introduction

Most structural applications of metals and ceramics involve
polycrystalline forms of these materials. Mechanical properties
such as hardness, strength, and ductility are often dominated by
the grain structure: grain size and morphology, grain boundary
character, lattice orientation, and defects which may segregate at
boundaries or reside within crystals. Regarding grain size effects,
a trend often observed in polycrystals is increasing strength with
decreasing size (e.g., Hall-Petch strength increasing with the
inverse square root of the grain size), which has been observed
in metallic and ceramic solids with grains ranging from hundreds
of microns to tens of nanometers in scale [1-3]. Mechanisms
responsible for size versus strength scaling depend on the material
and loading regime (e.g., competition among dislocation glide and
grain boundary sliding in metals or weakest link or Weibull-type
behavior in ceramics), and at extremely small grain sizes, the scal-
ing relation holds less frequently, with a possible reversal in trend
(inverse Hall-Petch behavior). Grain boundary interfaces more
strongly affect properties as grain size is reduced: as the surface

* Corresponding author.
E-mail addresses: john.d.claytonl.civ@mail.mil (J.D. Clayton), jaroslaw.knap.
civ@mail.mil (J. Knap).

http://dx.doi.org/10.1016/j.commatsci.2014.11.009
0927-0256/Published by Elsevier B.V.

area to volume ratio of such interfaces increases, the relative vol-
ume fraction of material in close proximity to interfaces increases.
In ceramics, grain boundaries are frequently the site of amorphous/
glassy phases of material whose properties differ from surrounding
crystals [2,4-6].

Continuum polycrystal models, wherein individual crystals are
resolved numerically, are useful for probing possible relationships
among microstructure features and mechanical response. Perhaps
most often used in the previous two decades for modeling fracture
are cohesive finite element approaches. Applications to ceramics
include [4,7-9]; applications to metals include [10,11]. These mod-
els have advantages of flexibility of user-prescribed cohesive laws
and have been successful for describing many effects of micro-
structure on failure. However, crack paths follow mesh boundaries
so mesh construction cannot be arbitrary; three-dimensional
modeling of fracture in complex microstructures using the cohe-
sive finite element method is difficult and computationally expen-
sive. Other two-dimensional computational approaches applied
towards modeling polycrystalline deformation and fracture
include the extended finite element method (XFEM) [12] and the
cohesive boundary element method [13]; in three dimensions,
continuum viscoplastic modeling of grain boundary phases of
finite thickness has also been undertaken [14].
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An alternative approach is invoked in the present work: the
phase field method. Phase field theory has been applied towards
a wide range of physical problems involving changes in structure
or representation of crystal defects: phase transitions [15], disloca-
tions [16,17], void growth [18], twinning [19-23], and amorphiza-
tion [24]. Some relevant phase field models of fracture developed
elsewhere include [25-33]. These models typically require kinetic
parameters to describe the rate of damage/crack propagation,
e.g., as in the Ginzburg-Landau equations, Allen-Cahn equations,
or similar rate equations. In contrast, the present work seeks equi-
librium solutions of the governing equations of momentum and
order parameter distribution via incremental energy minimization,
as also explained in [34]. The only material parameters needed in
the present theory are the crack plane normal (for anisotropic frac-
ture), surface energy of fracture, and elastic constants. A numerical
parameter is also needed for regularization such that the minimum
crack width is at least of the order of the mesh size. Earlier works
incorporating variational approaches to modeling brittle fracture
with some features in common with the present theory include
[35-37]. The phase field description of fracture should be con-
trasted with continuum damage mechanics descriptions such as
[38,39] that do not explicitly incorporate an intrinsic length scale
for regularization.

A geometrically nonlinear theory with anisotropic fracture
energy but isotropic elasticity was recently developed in [34]. This
theory was merged/coupled with a nonlinear phase field theory for
twinning, and solutions were analyzed for finite simple shear
deformation, in [40]. The present model, although linear elastic,
appears to be one of the first for modeling effects of simultaneous
anisotropic fracture energy and anisotropic elasticity in polycrys-
tals, the latter not considered in [34,40]. Phase field modeling of
polycrystals with grain boundary regions whose properties may
differ from surrounding crystals, similar to the present implemen-
tation, was reported in [31], in work that considered isotropic frac-
ture energy, anisotropic elasticity, electromechanical coupling, and
a kinetic approach to evolution of order parameter fields. In that
work, all grain sizes were in the nanometer regime, and all numer-
ical simulations were two-dimensional. A transition from inter-
granular to transgranular failure was found as the grain size was
increased, in conjunction with an increase in overall fracture
toughness. In contrast, newly reported here are effects of aniso-
tropic cleavage properties within crystals, large variations in grain
size/resolution spanning nanoscale to microscale, and various
grain boundary properties, all in the context of three-dimensional
simulations invoking incremental energy minimization (quasi-
statics). The present focus is on two materials: hexagonal poly-
types of silicon carbide (SiC) and zinc (Zn), both of whose most
likely transgranular fracture surfaces have been reported as the
basal plane [41,42]. Increases in hardness or strength have been
reported for polycrystals of these materials as their grain sizes
decrease to ultra-fine (several hundred nm to micron) and nano-
meter scales [5,6,43,44].

An outline of the remainder of this paper is as follows. The phase
field theory is described in Section 2. Numerical implementation
using the finite element method, along with representative mate-
rial properties for SiC and Zn and numerical representation of their
polycrystalline structures, are discussed in Section 3. Results of
phase field simulations are reported in Section 4, wherein relative
importance of model parameters and microstructure aspects on
mechanical response are deduced. Conclusions follow in Section 5.
Standard notation of modern continuum field theory is used: vec-
tors and tensors in bold italic font, scalars and components in italic
font. Summation applies over repeated indices when the index
notation is invoked, with components referred to a fixed Cartesian
frame of reference.

2. Phase field theory

First, governing equations are derived in the context of small
strain theory, but without reference to any specific strain energy
function. Next, anisotropic and isotropic elasticity models are
described.

2.1. Governing equations

Let x denote coordinates occupied by a material body © and let t
denote time. Let ¢(x,t) denote the order parameter associated with
fracture:

¢ = 0Vx € solid,
¢ = 1Vx ¢ failed domain, (2.1)
& € (0,1)vx € cohesive boundary.

Denote by u(x,t) the displacement. The displacement gradient is
Vu. Define the symmetric linear strain tensor and its trace quanti-
fying local volume change:

g= %[Vu +(Va)], tre=V-u (2.2)

The total energy functional for the body is
w6 = [ (W(Tne)+ g2 Volae 23)
Q

Strain energy per unit volume W is of the general form

W = Wig(Vu),E. (2.4)
Interfacial energy per unit volume is of the general form

§=80(0) +o: (Via Vi), (2.5)

where o is a symmetric second-order tensor. Consider a simply
connected body of volume Q with external boundary S =9Q.
Imposing the variational principle

0V = ¢ (t-ou+s6)dS, (2.6)
0Q

and assuming fields are sufficiently smooth, the following local
equilibrium equations in 2 and boundary conditions on 9Q are
derived, following general methods outlined for example in [19,40]:

ow

V-mi:V'P:O; (2.7)
og ow

— -2V .- (oV¢é) + =0; 2.8
522V (@VO+ 57| 28)
t=P-n, s=2w:(Véan). (2.9)

The traction vector (mechanical force per unit area) on 9Q is t; the
scalar conjugate force to order parameter ¢ on 99 is s; the outward
unit normal vector to 9Q is n. The symmetric stress tensor is

ow oW
=va- 28" (2.10)
The elastic driving force for fracture is the scalar
¢=0W(Vu,¢)/oc. (2.11)

For cleavage fracture on a preferred plane, it is assumed that the
orientation of such a plane is known a priori. For example, this
would be a plane or family planes of low surface energy or low
intrinsic strength in a crystal. Considered herein is a single orienta-
tion. The unit vector (in material coordinates) normal to this
potentially preferred cleavage plane is M. Let B, wo, and x denote
constants. For the present fracture model,
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20(¢) = BE, (2.12)

Crack thickness [ (i.e., phase field regularization width) and nominal
surface energy per unit area I" are related as [28,34,40]

B=T/l, wo=TIL

Setting 8 >> 0 penalizes fracture on planes not normal to M. Setting
B = Oresults in isotropic damage when used with isotropic modulus
degradation. Substituting from (2.12), the Euler-Lagrange equation
for order parameter equilibrium in (2.8) becomes

C=2wo[V*E+B(V2E-MaM : VV &) — 2B¢. (2.14)

Note that in the present variational approach, time t does not enter
the governing equations and can be regarded as a simple load
parameter in the context of incrementally updated boundary condi-
tions, for example.

As described later in Sections 3 and 4, the present theory is
applied towards computational modeling of polycrystalline frac-
ture. Polycrystals are represented by collections of discrete polyhe-
dral grains of varying initial lattice orientations, with possible
secondary glassy phases in between. Elasticity of each grain is
generally anisotropic, while all properties of glassy phases are
considered isotropic. Fractures within each grain are generally
anisotropic, with a preference for planar/flat fractures along planes
with unit normal M which is constant within each single crystal.
The larger the value of penalty factor g, the greater the tendency
for planar cleavage fracture. In contrast, as f — 0, the fracture
model tends towards isotropy, and curved or conchoidal fracture
surfaces become more feasible.

The present theory can be applied immediately to computa-
tional modeling of single crystals by omitting grain boundaries
and grain boundary phases and assigning uniform material proper-
ties (i.e., lattice orientation-dependent elastic constants and sur-
face energy) throughout the entire simulation domain. The
present implementation is restricted to crystals with a single dom-
inant cleavage plane (e.g., M corresponding to basal plane fracture
in hexagonal/HCP crystals). A conceivable method of extension of
the theory to consider preferential fracture on cleavage planes of
multiple discrete orientations requires introduction of additional
order parameter(s) for quantification of damage accumulation
and failure on each such plane.

o = wo[1 + (1 - M e M).

(2.13)

2.2. Anisotropic elasticity

The elasticity tensor (i.e., tangent elastic modulus) C depends
on the order parameter, and more specifically is degraded upon
fracture, as detailed below. Let C° denote the elasticity tensor of
the perfect material:

o*wW

=— . 2.15
(98[]81@ 0 ( )

0
CIjKL = CUKL|5:0

Bulk modulus kg for the undamaged material is defined as usual for
crystals of cubic, hexagonal, or trigonal symmetry [45,46]:

ko — (C11 + Cy2)Cs3 — 2C%3 . (2.16)

Ci1 + Ciz2 +2C33 —4Cy3
where Cyp C,(}KL are initial/lundamaged elastic constants in Voigt
notation (Greek indices running from 1 to 6). For linear anisotropic
elastic response, the strain energy potential is defined as the
quadratic form in strain

W:ls:C(é,Vﬂ):s.

5 (2.17)

The tangent elasticity tensor depends on ¢ and possibly volume
change:

Ciia = Ca L+ (1= 01 = &)°] + kodydia[1 = ¢ — (1
-0 =)=V u)".

Here, { €[0,1) is a constant of usual magnitude much less than
unity that is used to provide some residual elastic stiffness in dam-
aged regions where ¢ — 1; increasing this parameter has been
found to improve numerical stability in some cases. The following
notation applies: (x) = 1Vx >0, (x) =0Vx <0, (x)" = 1Vx > 0, and
(x)" = 0Vx < 0. The present model permits degradation of the bulk
modulus only when volume change is tensile and degradation of
the shear modulus regardless of whether loading is tensile or com-
pressive. In compression, the elasticity tensor ultimately degrades
to isotropic elasticity with the bulk modulus held fixed and shear
moduli decreased by a factor of {. This approach is the anisotropic
analog to that implemented in the isotropic linear elastic phase field
theory of [47].

The following partial derivatives are used in governing equa-
tions and subsequent numerical implementation of the theory:

(2.18)

ow . 1 il
P_mi—C(g,V-u).8+§{£‘8(v'u).s}INC.s, (2.19)
A%
8V]U18V{_UK ) = CU’(L’ (220)
oW 1 ac
W 1) 22
aC .
8’2’“ = [-2C (1 = &) + 2kodyde (1 — E)(-V -w)|(1 - 0);  (2.22)
ac IPw 1|, dC
Vu
P _ 2Ch — 2kodyd (—V - u) (1 = ); 2.24
022 = [2Cq — 2kodydra (—=V - u)"|(1 = {); (2.24)
d . &
a% — 2B, a?f — 2B, (2.25)
g rg
gvi— 20VE  goavE 2 (2.26)

Approximations in (2.19) and (2.20) omit the singularity associated
with tension-compression asymmetry in the bulk modulus arising
at V-u =0 when ¢ > 0.

A phase field theory for twinning incorporating nonlinear
anisotropic elasticity was developed in [19] involving an elastic
potential with Green-Lagrange strain, the conventional finite
strain measure encountered in nonlinear elasticity of crystals
|48]. However, numerical results could not be obtained due to
intrinsic instabilities which can be artifacts of such constitutive
models in compression [45,49]. Extension of the phase field
fracture model to nonlinear anisotropic elasticity may proceed in
the future with Eulerian material strain [50] or logarithmic strain
[46] which tend to provide more accurate and stable results for
crystals under finite compression and shear. Other avenues for
extension to account for ductile fracture involving plasticity
include incorporation of order parameters for dislocation dynamics
[17] and residual dilatation fields of dislocations [51].

2.3. Isotropic elasticity

For completeness, isotropic linear elasticity is now considered,
where the strain energy potential is

Wie(Vu), ¢ = 1)V(trs)2 e e

5 (2.27)
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Lamé coefficients u and 4 depend on ¢ and possibly volume change
[34,47]:

H(E) = Rolt + (1 =01 - &), ;.=1<(g.,v-u)7§p(5); (2.28)

, 2 . . *
k= (Zo+3H){E+ (-0 - OUV-w+(-V-u)}. (229)
Eqs. (2.12),(2.13),(2.25), and (2.26) still hold. The additional partial
derivatives below are used in Euler-Lagrange equations and
numerical implementation:

P:% . = )(tre)l +2us+%/l(trs)2 6<€k_u)1 ~A(V-u)1+2ue, (2.30)
% E ~ 200kt + (O Iy + Ok ); (2.31)
g:%w:%<%§7§%>(vu)z+g€l&8’ (2.32)
g—’g=—2(io+§uo){[(1—C)(l—é)]<V~u)}~, g’g=—2uo<1—é>(1—é); (2.33)
g;:aglﬂ’ vu:%(i’f%i‘j) (V-u)2+z?;8:s. (2.34)
%:2(%%#0)[(1*6)<V-u>], %:2%(1%)- (2.35)

Using first derivatives above, the Euler-Lagrange equation for order
parameter equilibrium is identical in form to (2.14); driving forces
on left sides differ for anisotropic and isotropic elasticity, respec-
tively given in (2.21) and (2.32).

3. Finite element modeling

An overview of implementation and application of the aniso-
tropic phase field theory of Section 2 towards polycrystalline
microstructures follows next. Discussed in turn are numerical
methods for solution of governing equations, material properties,
and representations of polycrystalline microstructures via
Lagrangian finite elements.

3.1. Numerical methods

Complex two- and three-dimensional boundary value problems
require numerical solutions, which are found here incrementally
using the finite element method, for example via general proce-
dures outlined in [19], wherein boundary conditions for displace-
ment and order parameter (or their conjugate forces) are
updated during each load increment. Nodal degrees of freedom
are displacement u and order parameter &. For certain boundary
conditions, candidate solutions [i.e., fields u(x), ¢(x)] are obtained
that minimize ¥(u, ¢) and thus satisfy (2.6). However, because ¥
is generally non-convex, multiple (local) minima may exist, and
therefore solutions may be non-unique; when ¥ of such a local
minima exceeds the global minimum energy, then such a solution
is said to be metastable. Second derivatives listed in Sections 2.2
and 2.3 (e.g., tangent moduli) are intended for use in finding
numerical solutions via conjugate gradient energy minimization.
To ensure irreversibility of crack extension, the local internal con-
straint 6£(x) > 0 for ¢(x) > &, with & some threshold value, is
imposed [36,34]. Here, as in [36], the value & = 0.9 is used. If
the above irreversibility constraint on §¢ is not enforced, then
fracture becomes thermodynamically reversible and cracks will
heal fully upon unloading, a feature noted in other phase field
implementations [26].

In the current implementation of the phase field theory, cracks
represented by positive values of order parameter ¢ are predicted
to follow paths dictated by incremental total energy minimization,

subject to the irreversibility constraint described above. When this
constraint is active, the incremental energy minimization problem
can be viewed as minimization of energy of an alternative system
with time dependent boundary conditions associated with intro-
duction of new (free) surfaces along which ¢ > 0.9 is prescribed;
equilibrium Egs. (2.7) and (2.8) remain satisfied in solutions thus
obtained for this alternative system.

3.2. Materials

Two representative anisotropic crystalline solids are considered
in this paper, one ceramic (SiC) and one metallic (Zn), both with
hexagonal crystal structures. Cleavage fracture planes in each kind
of crystal have been reported as the basal plane [41,42], or (0001)
in hexagonal Miller indices. Properties for SiC are listed in Table 1,
applicable at room temperature conditions wherein the ceramic is
inherently brittle. Various polytypes of SiC exist that may have
hexagonal, cubic, or trigonal crystal structures; tabulated proper-
ties are most applicable to the hexagonal 6H polytype [52]. Typical
grain sizes are on the order of tens of microns, but polycrystals
with grains as small as 5-15 nm have been reported [6], with
glassy interphase boundaries observed frequently in this nanocrys-
talline SiC. Increasing hardness and decreasing elastic stiffness
with decreasing grain size and increasing volume fraction of amor-
phous grain boundary phase have been noted [6]. Properties for Zn
are listed in Table 2, applicable at low temperature conditions
(77 K) wherein the metal becomes brittle due to reduced mobility
of gliding dislocations and twinning partial dislocations. In Zn, an
increase in strength and decrease in ductility have been observed
as grain sizes are reduced from hundreds of microns to tens of
nanometers [43,44]. Peak ductility has been noted for the ultra-fine
grained regime (grain sizes of several hundred nm), wherein grain
boundary sliding has been posited as a likely primary deformation
mechanism [44].

For each material, in addition to the five independent second-
order anisotropic elastic constants, the bulk modulus ko obtained
from (2.16) and the Voigt-averaged shear modulus u, are also
listed in Tables 1 and 2. These isotropic constants are used as base
stiffness values for amorphous grain boundary regions in many
simulations. Grain boundary phases are assigned isotropic fracture
properties (p = 0) with surface energy I'c whose value is varied
among simulations. The following ratios of grain boundary to bulk
surface energy and elastic shear stiffness are also defined, where
the G subscript refers to a property value used for the isotropic
grain boundary region:

Table 1
Room temperature properties of silicon carbide.
Parameter Value Definition Reference
Ciq 501 Elastic constants (300 K) [GPa] [52]
Ci2 112
Ci3 52
Cs3 549
Caa 161
ko 222 Bulk modulus [GPa]
Lo 192 Shear modulus [GPa]
Ry 0.1-10 Relative elastic stiffness of grain
boundary phase
r 860 Cleavage energy [m]J/m?] [52]
Rr 0.1-10 Relative surface energy of grain
boundary phase
B 0-100 Cleavage anisotropy [34]
14 104-10?2 Residual stiffness [34,36]
L 10 '-10? Domain size [um)|
/L 102 Ratio of regularization width [47]

to domain size
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Table 2
Low temperature properties of zinc.
Parameter Value Definition Reference
C11 17.4 Elastic constants (77 K) [GPa] [53]
C]z 3.4
Ci3 5.1
C33 6.7
Caa 4.5
ko 6.3 Bulk modulus [GPa]
o 5.1 Shear modulus [GPa]
Ry 1 Relative elastic stiffness of grain
boundary phase
r 105 Cleavage energy [m]/m?] [42,54]
Rr 1 Surface energy of grain boundary phase
B 100 Cleavage anisotropy [34]
14 102 Residual stiffness [34]
L 107 1= Domain size [pm)]
10°
/L 102 Ratio of regularization width to domain  [47]
size
Rr=Tc/I',  Ru=(lo)g/Ho = (Ko)g/ko. 3.1

Effects of various prescriptions of residual elastic stiffness factor ¢
are also examined, where ¢ > 10~ was found necessary for numer-
ical stability. Regularization parameter | is varied among simula-
tions of SiC and Zn that consider domains with mesh dimensions
of various scales, subject to resolution constraints that require [ to

be on the order of the mesh size or larger [19,30,34], leading to
the fixed values of I/L shown in Tables 1 and 2.

3.3. Polycrystalline representations

Synthetic microstructures representative of generic polycrystals
with equi-axed grains are considered in the present work, in the
absence of serial section and/or electron back-scatter diffraction
(EBSD) data that could be used to recreate true microstructures
from material specimens [55]. First consider microstructures in
which grain boundary phases are absent. In the present approach,
identical to that taken in [9], volume meshes are created from ste-
reolithographic (STL) files of surface representations of grains com-
prising a given microstructure. Surface meshes are generated for
three-dimensional microstructures produced using a Monte Carlo
grain growth algorithm [56]. A conformal triangular surface mesh
covers each crystal volume, with an interpolation method used
where a triangle separates two materials [57]. A three-dimensional
volume mesh of hexahedral continuum finite elements is then cre-
ated to fill the surface mesh of every crystal.

Most simulations feature polycrystals with amorphous grain
boundary phases. For these simulations, the original microstruc-
ture without such phases is remeshed uniformly with hexahedral
elements of constant size. Elements whose centroids lie within dis-
tance w/2 of any grain boundary surface are then reassigned from
a crystal to the amorphous phase.

The polycrystalline microstructure consists of 50 grains. This
aggregate is a cube of dimensions L x L x L, with one corner fixed

(b)

(d)

Fig. 1. Polycrystalline microstructures: (a) microstructure 1; (b) microstructure 2; (c) microstructure 3; (d) initial edge crack [self-equilibrated order parameter contour at
null applied strain (¢ = 0); red < ¢ = 1;blue « ¢ = 0]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)
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Table 3
Polycrystalline microstructures.

Microstructure GB fraction, v GB thickness, w/L

1 0.202 0.020
2 0.139 0.013
3 0.000 0.000

at (x,y,z) = (0,0,0) and the opposite corner at (x,y,z) = (L,L,L).
Microstructures are shown in Fig. 1. Average grain sizes for each
microstructure can be estimated as d ~ L/50"% ~ L/4. Use of the
same meshes for each material enables quantification of differ-
ences in deformation and failure behavior by varying material
properties (i.e., elasticity, surface energy) while holding the micro-
structure fixed. Differences resulting from grain morphology are
studied by deforming each microstructure in different directions.
Finite element meshes contain between 1 x 10° and 3.5 x 10°
hexahedral elements. Mesh refinement is sufficient to resolve grain
boundary surface morphology and fracture regularization length L
Three meshes are considered, labeled microstructures 1, 2, and 3 in
Table 3, and shown in Fig. 1(a)-(c). Microstructures 1 and 2 contain
amorphous grain boundary phase of volume fraction v and may
fracture along grain boundaries and/or through grains. Microstruc-
ture 3 is fully crystalline (no second phase), with perfectly bonded

(@

(2)

(h)
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grains, essentially restricting fractures to transgranular type,
though stress concentrations from anisotropic elastic coefficient
mismatch at grain boundaries may affect damage initiation and
evolution.

In all simulations discussed in Section 4, random initial lattice
orientations are used for grains comprising each microstructure.
Different sets of random initial orientations are investigated in
some simulations. Lattice orientation affects model results through
the dependence of anisotropic elastic coefficients C,; and direction
of normal to the cleavage (basal) plane M on crystallographic ori-
entation. Absolute sizes of each mesh are varied in the range
10° nm < L < 10° nm among simulations reported in Section 4,
leading to approximate grain sizes d ranging from 25 nm to 25 pm.

Further remarks on the resolution of grain boundaries are in
order. A grain boundary is considered fully coherent when lattices
on either side match perfectly; for example, coherent boundaries
contain no dislocations or vacancies associated with respective
shear or volumetric incompatibility at the interface [58,59]. Fully
incoherent grain boundaries demonstrate a highly disordered (lack
of) structure, with the possibility of a large density of lattice
defects. Semi-coherent boundaries consist of local regions wherein
lattices match, interspersed with regions of mismatch and possible
defects. Perfect twin boundaries may be categorized as coherent,
low-angle and high coincidence boundaries [58] may be

)

Fig. 2. Fracture profiles in elastically anisotropic SiC polycrystal (microstructure 1) for isotropic surface energy (f = 0), unit grain boundary stiffness ratio R, = 1, domain size
L =100 pm, lattice orientation set 1, where elements with ¢ > 0.7 are removed for visualization: (a) Ry = 1,6 =0.05%; (b) Ry = 1,6 =0.06%; (c) Rr =1, =0.11%; (d)
Rr =0.1,& = 0.04%; (e) Ry = 0.1,& = 0.06%; (f) Ry = 0.1,& = 0.11%; (g) Rr = 10,¢ = 0.08%; (h) Ry = 10,& = 0.09%; (i) Ry = 10, = 0.12%.
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categorized as semi-coherent, and random high-angle boundaries
with low coincidence are considered incoherent. Boundary surface
energy (which may implicitly include short range elastic energy of
defects) tends to increase with decreasing coherence. In most sim-
ulations reported herein, grains are assigned random initial lattice
orientations, leading to high-angle boundaries that can be viewed
as fully incoherent, though the statistical probability of a nonzero
fraction of boundaries with low misorientation is not precluded.
Each boundary is assigned the same surface energy regardless of
misorientation. A more physically realistic approach might assign
variable surface energy I' dependent on misorientation or other
geometric grain boundary characteristics, but such an approach
(which necessarily involves introduction of more model parame-
ters for prospective study) is not considered in this work. For some
simulations in which grain boundary fractures are intentionally
prohibited, surface energy of boundaries can be considered infinite,
but cleavage fractures in the vicinity of and traversing across grain
boundaries remain possible.

Tensile deformation boundary conditions are considered in Sec-
tion 4, corresponding to an average state of uniaxial stress. Con-
sider for example straining in the z-direction. Tensile
displacement increments Ju are prescribed along the face z=1L,
while lateral edges of the cube are left free to contract due to the

©

Poisson effect. The cumulative average strain is ¢ = Y éu/L, with
summation over the number of applied strain increments. Upon
application of each increment, a solution of the governing equa-
tions is found via conjugate gradient energy minimization, as dis-
cussed in Section 3.1. Each microstructure is seeded with an
initial defect, specifically an edge crack, along the midplane (L/2)
of one edge of the cube and oriented perpendicular to the direction
of loading, as shown in Fig. 1(d). The initial length and thickness of
the crack, wherein conditions ¢ =1 are applied throughout the
simulation, are 0.1L and 0.02L. The initial crack traverses grains
and grain boundary regions and tends to extend in mode I fashion
when the applied tensile strain is sufficiently large.

4. Results and discussion
4.1. Effects of crystal and grain boundary properties

First examined are effects of grain boundary strength, as
prescribed by R defined in (3.1). Shown in Fig. 2 are representative
phase field simulation results for SiC polycrystals with
0.1 < Rr < 10. For the case shown in Fig. 2(a)-(c) at successively
larger applied strain ¢, R = 1 and the only source of heterogeneity
is elastic anisotropy among crystals. The initial edge crack

Fig. 3. Fracture profiles in elastically anisotropic SiC polycrystal (microstructure 1) for anisotropic surface energy ( > 0), unit grain boundary stiffness and energy ratios
R, =Rr =1, domain size L = 100 um, where elements with ¢ > 0.7 are removed for visualization: (a) lattice orientation 1, § = 100,& = 0.07%; (b) lattice orientation 1,
B =100,¢ =0.08%; (c) lattice orientation 1, = 100,¢ = 0.16%; (d) lattice orientation 2, = 100,¢ = 0.07%; (e) lattice orientation 2, g = 100,¢ = 0.08%; (f) lattice
orientation 2, = 100, ¢ = 0.16%; (g) lattice orientation 2, f = 10, & = 0.07%; (h) lattice orientation 2, § = 10, & = 0.08%; (i) lattice orientation 2, = 10,& = 0.11%.
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propagates straight across the sample since fracture properties are
uniform among grains and grain boundary regions. For the case
shown in Fig. 2(d)-(f), Rr = 0.1, corresponding to weak amorphous
regions at grain boundaries. Resulting fracture patterns are domi-
nated by intergranular networks of cracks. For the case shown in
Fig. 2(g)-(i), Rr = 10, corresponding to strong grain boundary
phases and leading to predominantly transgranular crack net-
works, with crack blockage occurring at some grain boundaries.
Similar trends were reported in [12], where the ratio of transgran-
ular to intergranular fractures was predicted to increase with
increasing Ry in 2D simulations of elastically isotropic polycrystals
using XFEM.

Considered next are effects of cleavage energy anisotropy, as
measured by nonzero values of 8 in (2.12). Recall that on a plane
with unit normal M, here corresponding to [0001] directions in a
hexagonal lattice, surface energy is of base value I', while it
increases by a factor of up to g on planes with orientations orthog-
onal to M. Shown in Fig. 3 are results for which R = 1, meaning
that intrinsically weak cleavage (i.e., basal) planes have strengths
comparable to grain boundary facets, while other planes within
each crystal have strengths effectively exceeding grain boundary
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strengths. Comparing two cases with different lattice orientation
sets in Fig. 3(a)-(c) and (d)-(f), all with g = 100 [34], different frac-
ture patterns emerge as a result of cleavage and elastic anisotropy,
consisting of a mixture of transgranular and intergranular cracks.
As shown in Fig. 3(g)-(i), decreasing f to 10 reduces the cleavage
anisotropy, and the crack network becomes more transgranular
in character relative to the cases with g = 100.

Studied next are effects of the thickness of the amorphous grain
boundary phase in SiC polycrystals with anisotropic elasticity and
anisotropic surface energy (f = 100). Results for microstructures 2
and 3 of Fig. 1 are depicted in Fig. 4(a)-(f), with two different initial
lattice orientation distributions shown for microstructure 3. These
results can be compared with those in Fig. 2(a)-(g) for microstruc-
ture 1. Recall from Section 3.3 and Table 3 that microstructure 1
contains the largest fraction of amorphous phase (v ~ 20%), micro-
structure 2 somewhat less (v~ 14%) and microstructure 3 no
amorphous phase (v = 0, perfectly bonded crystals). Inspection of
the order parameter contours in Figs. 3(a)-(c) and 4(a)-(d) demon-
strates that fracture patterns are similar, but not identical, in
microstructures with different volume fractions of grain boundary
regions but all with the same initial lattice orientation distribution.

1.2

—— Micro 1, Orient 1
—— Micro 1, Orient 2
~—— Micro 2, Orient 1

Micro 2, Orient 2
—— Micro 3, Orient 1
—— Micro 3, Orient 2

0.05

0.10

0.15 0.20

€ [%]

(2)

Fig. 4. Fracture profiles in elastically anisotropic SiC polycrystals for anisotropic surface energy (f = 100), unit grain boundary stiffness and energy ratios R, = R = 1, domain
size L = 100 um, where elements with ¢ > 0.7 are removed for visualization: (a) microstructure 2, lattice orientation 1, ¢ = 0.08%; (b) microstructure 2, lattice orientation 1,
& = 0.09%; (c) microstructure 3, lattice orientation 1, ¢ = 0.09%; (d) microstructure 3, lattice orientation 1, ¢ = 0.11%; (e) microstructure 3, lattice orientation 2, ¢ = 0.10%; (f)
microstructure 3, lattice orientation 2, ¢ = 0.11%; (g) average axial stress versus applied axial strain.
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Comparing Fig. 4(c) and (d) with Fig. 4(e) and (f) change in initial
lattice orientation leads to different crack profiles in microstruc-
ture 3. Average stress-strain behavior is reported in Fig. 4(g),
where P is the average normal component of stress tensor P in
the entire specimen in the direction of loading. Peak strengths
(i.e., maximum values of P) increase with decreasing volume frac-
tion of grain boundary phase and are largest in microstructure 3.
Such behavior is not unexpected since availability of weak regions
to promote failure near grain boundaries should decrease with
decreasing v. Effects of lattice orientation on average tensile stress
P are also apparent in Fig. 4(g) but are not as pronounced as effects
of grain boundary microstructure.

1.00

0.750

0.500
-0.250
-0.00

Results in prior Figs. 2-4 all addressed SiC polycrystals with
grain sizes d in the conventional regime (L ~ 4d = 100 pm). Con-
sidered in Fig. 5 are fracture morphologies and average stress—
strain behavior of SiC polycrystals with grain sizes on the order
of tens of nm, wherein effects of amorphous grain boundary phases
have been reported as increasingly important in experiments [6].
In particular, effects of elastic stiffness of grain boundary phases
relative to that of the bulk polycrystal are studied in microstruc-
ture 1 [imposed via R, of (3.1)], with anisotropic elastic and failure
properties prescribed for the grains. Comparing Fig. 5(a) and (b)
(stiff grain boundary regions) with Fig. 5(c) and (d) (soft grain
boundary regions), variation of R, leads to different fracture

(b)
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Fig. 5. Fracture profiles in elastically anisotropic SiC polycrystal (microstructure 1) for anisotropic surface energy (f = 100), unit grain boundary surface energy ratio Ry = 1,
domain size L = 100 nm, lattice orientation set 1, where elements with ¢ > 0.7 are removed for visualization: (a) R, = 10,& = 1.8% (b)R, =10, =2.2% ()R, = 0.1, = 2.1%

(d) R, =0.1,& = 2.8%; (e) average axial stress versus applied axial strain.
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patterns, all a combination of cleavage and intergranular cracks.
From average stress—strain behavior reported in Fig. 5(e), the
following trends are apparent: initial tangent elastic modulus
and peak strength increase with increasing R, ductility does not
necessarily increase with increasing R,, and peak strength
decreases as grain boundary surface energy is reduced and cleav-
age anisotropy is eliminated (R = 0.1 and g = 0). Predicted trends
for elastically compliant grain boundary phases are in general
agreement with experiment [6]. As will be examined in more detail
in Section 4.2, peak stress and ductility (i.e., ¢ at maximum P) are
substantially larger for polycrystals with grain sizes on the order
of tens of nm compared to those with sizes on the order of tens
of microns, as is evident upon comparison of data in Figs. 4(g)
and 5(e).

4.2. Effects of length scale

Representative results of phase field simulations for Zn poly-
crystals loaded in tension are shown in Fig. 6 for identical micro-
structures and properties except grain/domain size, which is set
at L =100 pm for results of Fig. 6 and L = 100 nm for results of
Fig. 6(c) and (d). Fracture morphologies are remarkably similar
regardless of length scale. However, applied tensile strains ¢
required to achieve the same state of overall damage are much lar-
ger for polycrystals with grain sizes on the order of nm than those
with grain sizes on the order of pm. Peak loads are correspondingly
larger for smaller specimens, as discussed more in what follows.

Critical average stress Pc (defined as the maximum average
tensile stress attained prior to load drop associated with fracture
propagation) is shown versus grain size d in Fig. 7(a) for Zn and

(c)

SiC microstructures. In each data set, four grain sizes are
considered, with material properties besides grain size (i.e., d,L,
or [) held fixed. Initial lattice orientations and initial crack place-
ments do vary among materials, however. Recall from Section 3.2
that I/L is fixed at 0.01 [47], such that variations in prescribed val-
ues of d and regularization width [ are always directly proportional.
In all cases, critical stress Pc increases with decreasing scale in an
inverse square-root manner, i.e. (Pc — Py) o 1 /\/a. with Py a con-
stant limiting strength for very large grained structures. This trend
is reminscent of Hall-Petch scaling observed in numerous metallic
and ceramic polycrystals in the ultra-fine grained and nanocrystal-
line regimes [1-3]. Notice that the proportionality constant or
slope of strength versus inverse root of size varies among materials
and microstructures. For SiC with isotropic surface energy (8 = 0),
weakening the grain boundaries (decreasing Ry) decreases the
slope or size effect. The same trend is obtained by holding R con-
stant and decreasing B, which has the effect of decreasing the
cleavage strength of many grains (depending on their orientation
M) relative to the grain boundary strength. It is also remarked that
the present phase field predictions of critical strength proportional
to 1/+/1 are in agreement with other phase field analyses of tensile
fracture [32,47] and shear fracture [40] in homogeneous isotropic
solids.

Table 4 reports ductility & for SiC and Zn polycrystals of the
same range of grain sizes considered in Fig. 7(a), with different ran-
dom initial lattice orientations considered among the two materi-
als and =100, Rr =R, =1. For each material data set, the
following scaling relation is apparent:

(e)r _ <Z_j)”27 (4.1)

(ec);

(b)

(d)

Fig. 6. Fracture profiles in elastically anistropic Zn polycrystal (microstructure 1) for anisotropic surface energy (8 = 100), unit grain boundary stiffness and surface energy
ratios R, = Ry =1, lattice orientation set 3, where elements with ¢ > 0.7 are removed for visualization: (a) L =100 um,&=0.15% (b) L =100 pm, & = 0.20% (c)

L =100 nm, ¢ =4.4% (d) L = 100 nm, ¢ = 8.0%.
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Fig. 7. (a) Peak axial stress versus grain size d in Zn and SiC polycrystals and (b) average axial stress versus applied axial strain for various residual stiffness values ¢ in SiC

(a)
polycrystals.
Table 4
Polycrystalline ductility &c[%)] versus grain size d.
Material d~25pum d~25um d ~ 250 nm d~25nm
SiC 0.07 0.22 0.70 2.20
Zn 0.14 0.44 1.40 4.40

where subscripts 1 and 2 correspond to values for two different
grain sizes. In other words, ductility, like strength, is predicted to
increase with decreasing size in an inverse square root manner.

Finally, effects of residual strength parameter ¢ are quantified in
average stress—strain behavior shown in Fig. 7(b), results which
correspond to SiC polycrystals with microstructure 1, lattice orien-
tation set 1, and L = 100 pm. Peak strength and ductility increase
slightly as ¢ increases from 107> to 1072, while residual strength
after the primary load drop increases significantly with increasing
{. Numerical stability was found to increase with increasing (.
Results for { =10~ (not shown) further confirmed these trends,
which have also been noted in other phase field simulations [36]
that considered values of { =8 x 107 and ¢ = 8 x 107>, Results
reported elsewhere in this paper have been obtained using
¢ = 1072, which produced the most numerically stable response;
in such simulations, fully failed regions with ¢ — 1 have residual
shear stiffness p — 0.01x, which can be interpreted as very
weakly elastic as opposed to pure free space with absolute zero
stiffness.

5. Conclusions

Phase field theory and 3D finite element simulations of poly-
crystals—with individual crystals having anisotropic elastic coeffi-
cients and anisotropic fracture properties-have been described.
Specifically studied materials include silicon carbide and zinc with
hexagonal crystal structures and possibly intrinsically weak basal
planes. In many simulations, second phases of isotropic amorphous
material have been inserted in the vicinity of grain boundaries.
Effects of the following microstructure characteristics and material
properties on quasi-static tensile fracture have been investigated:
initial lattice orientation; cleavage energy anisotropy; relative
strength, stiffness, and thickness of grain boundary layers; and
grain size (holding normalized regularization width fixed).

Key findings are summarized as follows. An increasing tendency
for transgranular fracture has been observed as grain boundary
surface energy increases or as cleavage plane anisotropy decreases.
An increasing tangent modulus and increasing peak strength have
been observed as elastic stiffness of the amorphous grain boundary
phase increases. A decreasing peak strength has been predicted

with increasing thickness or volume fraction of amorphous grain
boundary phase. Finally, Hall-Petch scaling of peak tensile
strength with variation in grain size has been observed, with the
slope of the strength-size scaling relationship dependent on mate-
rial properties.
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